Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 899: 165607, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474070

RESUMEN

Contamination of disposable medical masks has become a growing problem globally in the wake of Covid-19 due to their widespread use and improper disposal. Three different mask layers, namely the outer layer, the meltblown (MB) filler layer and the inner layers release three different types of microplastics, whose physical and chemical properties change after prolonged environmental weathering. In this study, physical and chemical changes of mask microplastics before and after aging were characterized by different characterization techniques. The toxic effect and mechanism of aged mask microplastics on Escherichia coli (E. coli) were studied by measuring the growth inhibition of mask microplastics, the change in ATPase activity, the change in malondialdehyde content and reactive oxygen species production, and the release of the chemical composition of exopolymeric substances (EPS). The microplastics of the aged MB filter layer had the most significant inhibitory effect on E. coli growth, reaching 19.2 % after 36 h. Also, under the influence of mask microplastics, ATPase activity of E. coli was inhibited and a large amount of EPS was released. The chemical composition of EPS has also changed. This study proposed the possible toxicity mechanism of mask microplastics and the self-protection mechanism of E. coli, and provided a reference for future research on the toxic effects of mask microplastics on environmental organisms.


Asunto(s)
COVID-19 , Microplásticos , Humanos , Anciano , Microplásticos/toxicidad , Plásticos/toxicidad , Escherichia coli , Polímeros , Adenosina Trifosfatasas , Máscaras
2.
Environ Res ; 235: 116657, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451579

RESUMEN

In this study, TiO2 was generated in situ on the surface of Ti3C2 by a hydrothermal process, and urea was added to form N-doped TiO2-Ti3C2. The surface morphology and functional group properties of the prepared materials were analyzed by SEM, TEM, XRD, XPS, etc. The results showed that anatase TiO2 formed on the surface of the Ti3C2 monolayer. Nitrogen-doped nanomaterials show good phenol degradation and good recyclability under visible light. At a urea content of 0.5 g, the photocatalytic degradation of phenol under visible light is best, reaching 88.9% in 3 h, with ·OH and ·O2- holes playing the leading role. However, at lower pH and higher ion concentration, the degradability of N-TiO2-Ti3C2 for phenol is reduced. Furthermore, the material prepared in this work is a two-dimensional layered material, and the adsorption of phenol best fits the Langmuir adsorption isotherm model and the pseudo-second-order kinetic equation. In terms of the antibacterial performance of the material, the N-doped TiO2-Ti3C2 nanomaterial made with 0.2 g of urea has an Escherichia coli scavenging efficiency of about 97.86%, which is an excellent antibacterial material. This study shows that the N-TiO2-Ti3C2 produced in this experiment can be used for environmental applications.


Asunto(s)
Contaminantes Ambientales , Titanio , Titanio/química , Luz , Fenol/química , Fenoles , Antibacterianos/farmacología , Oxígeno , Catálisis
3.
Environ Sci Pollut Res Int ; 30(24): 66102-66112, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37097580

RESUMEN

A generation of microplastics caused by improper disposal of disposable masks has become a non-negligible environmental concern. In order to investigate the degradation mechanisms of masks and the release of microplastics under different environmental conditions, the masks are placed in 4 common environments. After 30 days of weathering, the total amount and release kinetics of microplastics released from different layers of the mask were studied. The chemical and mechanical properties of the mask were also discussed. The results showed that the mask released 25141±3543 particles/mask into the soil, which is much more than the sea and river water. The release kinetics of microplastics fit the Elovich model better. All samples correspond to the release rate of microplastics from fast to slow. Experiments show that the middle layer of the mask is released more than the other layers, and the amount of release was highest in the soil. And the tensile capacity of the mask is negatively correlated with its ability to release microplastics in the following order, which are soil > seawater > river > air > new masks. In addition, during the weathering process, the C-C/C-H bond of the mask was broken.


Asunto(s)
Máscaras , Microplásticos , Contaminantes del Suelo , Cinética , Plásticos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...